Extending market basket analysis with graph mining techniques: A real case
نویسندگان
چکیده
A common problem for many companies, like retail stores, it is to find sets of products that are sold together. The only source of information available is the history of sales transactional data. Common techniques of market basket analysis fail when processing huge amounts of scattered data, finding meaningless relationships. We developed a novel approach for market basket analysis based on graph mining techniques, able to process millions of scattered transactions. We demonstrate the effectiveness of our approach in a wholesale supermarket chain and a retail supermarket chain, processing around 238,000,000 and 128,000,000 transactions respectively compared to classical approach. ! 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
On Combined Approach for mining FSG in Transactionized Graph Datasets
Graph Data mining has ushered into new era with advanced data mining techniques. Mining Frequent Sub Graphs is the crucial area which appeals the ease of extracting the patterns in the graph. Typical graph data like Social Networks, Biological Networks (for metabolic pathways) and Computer Networks needs analysis of virtual networks of a category. Such graphs need be modeled as layered to disti...
متن کاملMarket Basket Analysis Visualization On A Spherical Surface
This paper discusses the visualization of the relationships in e-commerce transactions. To date, many practical research projects have shown the usefulness of a physics-based mass-spring technique to layout data items with close relationships on a graph. We describe a market basket analysis visualization system (MAV) using this technique. This system is described as the following: (1) integrate...
متن کاملPrivacy Aware Market Basket Data Set Generation: A Feasible Approach for Inverse Frequent Set Mining
Association rule mining has received a lot of attention in the data mining community and several algorithms were proposed to improve the performance of association rule or frequent itemset mining. The IBM Almaden synthetic data generator has been commonly used for performance evaluation. One recent work shows that the data generated is not good enough for benchmarking as it has very different c...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملSeveral Remarks on Mining Frequent Trajectories in Graphs
We apply techniques that originate in the analysis of market basket data sets to the study of frequent trajectories in graphs. Trajectories are defined as simple paths through a directed graph, and we put forth some definitions and observations about the calculation of supports of paths in this context. A simple algorithm for calculating path supports is introduced and analyzed, but we explore ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 41 شماره
صفحات -
تاریخ انتشار 2014